Automated Liquid Penetrant Inspection with high Throughput and high Process Reliability

KD-Check Liquid Penetrant Inspection Systems

Semi-Automated System for Castings

Stations of the system

- A: Component feeding
- **B:** Pre-cleaning (waterbath with additional water nozzles)
- C: Dryer 1
- **D1:** Penetrant dip tank (level 2, medium sensitivity)
- **D2:** Penetrant dip tank (level 3, high sensitivity)
- **E:** Draining station (one tank per way, penetrant recirculation to the original tank)
- F: Penetrant removal with water and hand-gun (after lowering into stainless steel tank and expanding the lateral protection doors)
- G: Dryer 2
- **H:** Electrostatic developer application (with exhaust in rear, lateral protection doors)
- Visual examination under UV light in a testing cabin

U-shaped testing system, component transport in stainless steel baskets

Characteristics:

- Fluorescent inspection of automotive and power generation components made of stainless steel and titanium, a wide variety of components is testable
- Modular system concept
- Components transport in baskets (0.5 m x 0.5 m), max. 30 kg per basket, manual basket transportation on rollers
- Method according to EN ISO 3452: Type I, Method A, Form a
- Sensitivity level 2 or level 3 (two optional ways through the system)
- Electrostatic unit for dry developer
- application • Examination cabin with 2 positions,
- evaluation with UV-LED large area lamp
- Optional used wash water recycling
- via active carbon filter columns Siemens control of process parameters
- with order-related data storage

Fully Automated Testing System for Automotive Forgings

Stations of the testing system

- A: Component feeding
- **B:** Penetrant application (pneumatic lowering into dip tank)
- C: Draining station and recirculation of excess penetrant
- **D:** Penetrant removal via water-jet tunnel
- E: Buffer
- **F:** Dryer (circulated warm air)
- **G**: Dry developer application in a vortex chamber
- H: Developing line
- I: Visual examination
- **J:** Used wash water recycling (doubly active carbon filtering column)

Linear component transport in workpiece holders with 3 minute cycle time

Characteristics:

- Fluorescent liquid penetrant testing of
- forged automotive motor components
- Method acc. to EN ISO 3452: Type I, Method A, Form a
- 10 components in one workpiece holder
- Transport via roller tables
- Pneumatic movement of the workpiece holders
- Simple linear transport concept (almost
- no lifting or lowering of components) • 3 minutes cycle time with buffering of
- longer lasting process steps PLC process control and parameter
- documentation Optional automated re-dosage of testing
- agent Wash water recycling via filtering columns
- (cost reduction) and energy efficient dryers
- Inspection with UV-LED large area lamps

Semi-Automated Testing System for Aluminium Forgings with oval Crane Runway

Stations of the testing system

- A: Pre-cleaning
- **B:** Dryer C: Penetrant application
- **D:** Penetrant drainage
- **E:** Penetrant removal
- F: Dryer G: Electrostatic application of dry developer
- H: Visual examination under UV light in darkroom (cabin)

Oval crane runway for workpiece holder transportation, right: examination in cabin

Characteristics

- Testing system for 4500 parts per day
- Most stations in duplicated design
- Fluorescent testing
- Component transport in suspended
- workpiece holders, each for 24 parts Electrostatic dry developer application
- Visual examination with mobile UV-LED lamp

Process control

- SIEMENS electrical control with touchpanel
- Penetrant level measurement
- Temperature control of the penetrant tanks
- Temperature regulation for the four ovens Time-controlled process steps via stop watches, process sequence visualization
- Position monitoring of workpiece holders
- for each station Doubly active carbon filter columns

with signal lights

Authors Paper P33: Stephan Robens, Dr. Ralf Wagner, Dr. Oliver Goerz, Dr. Wolfram Deutsch, DACH-Conference Salzburg, Austria, May 2015